A monored is set in comme binary operation, and identify
element. Usually denoted (+, 0) P
Given a field k have monored algebra
$$k[P] = \bigoplus_{p \in P} k \chi^{p}$$

 $\chi^{p} \cdot \chi^{p'} = \chi^{p+p'}$

$$k[N] \stackrel{\sim}{=} k[x]$$

Throughout we fix the notation:

$$N = Z^{n} \qquad M = N^{v} = H_{om} Z^{u} (N, Z)$$
$$N_{R} = N \otimes R^{n} \qquad M_{R} = M \otimes R^{n}$$

$$\sigma \leq N_{\rm R}$$
 is a convex rational polyhidral cone
if it's of the form:
 $\sigma = (\text{cone}(S) = \left| \sum_{u} \lambda_{u} u \right| \lambda_{u}^{3} 0 \right|$
 $S \leq M$ finite.

• The dual come of or is

$$\sigma^{V} = \int m e M_{R} \left| \langle m, u \rangle > 0 \quad \forall u \in \sigma \right|$$

• Gordon's theorem $\implies \sigma' \cap M'$ is finitely generated monoid (commutative addition, identity element) i.e $Nm_1 \oplus __ \oplus Nm_5 \le M$

• Finally
$$X_{\sigma} = S_{pec} k [\sigma' \cap M]$$
 is the affine toric voility
defined by the cone σ .
(vhy is it so? $k[x_{1}, ..., x_{s}] \implies k[\sigma' \cap M] \implies k[W]$
 $\chi_{i} \longmapsto \chi_{i}^{m_{i}}$

$$\frac{E \times}{\sigma} = (une(e_1, e_2) \subseteq \mathbb{R}^2$$

$$\sigma^{\vee} = (une(e_1^{\vee}, e_1^{\vee}) \leq \mathbb{R}^2$$

$$k[\sigma^{\vee} \cap \mathbb{Z}^2] = k[\chi, \gamma]$$

Above we require $\sigma_1 \sigma_2$ to be a face of each $\sigma_1 \sigma_2$. One can find me Relint $(\sigma_1^v \cap (\sigma_2^v)^v)$ it.

$$(X_{\sigma_1})_{\chi^m} = X_t = (X_{\sigma_2})_{\chi^{-m}}$$

After all these gluings we get a separated twice variely.

Functuriality N, AN, lattice ul group homo. $\sum_{i} \leq (N_i)_{R}$ fors ¢ is a map of fors if ∀o, ∈ ∑, ∃ ∪z ∈ ∑, s,t. p(0) = 02 $\implies \phi'(\sigma, \dot{\sigma}) \in \sigma'$ \implies k[o, nm,] \implies k[o, nm,] these anaps are compatible for varians of all rogine to $X_{\Sigma_1} \longrightarrow X_{\Sigma_2}$

PNivors

Orbit-Cone Suys that

$$|rays \ p \ of \ \Sigma \ f \ O(p) \ codim \ 1$$

the closure
$$O(p)$$
 is T_N - invariant prime division.
 $D_{\mathcal{A}}$ Hence have a valuate $w_p: C(X_Z)^* \to Z$

Prop

w) the above situp

$$V_{S}(x^{m}) = \langle m, u_{S} \rangle$$

$$d_{V}(x^{m}) = \sum_{g \in \Sigma(I)} \langle m, u_{S} \rangle D_{g}$$

Det "Dual"
A lattice polytope is Conv(S) for S
$$\leq$$
 M. for ite.
Have faces, facets, vertices just as cones except this time
defined by supporting affire hyperplanes.
 $F = H_{u,b} \cap P$ $P \leq H_{u,b}^{+}$
 $H_{u,b}^{+} = Sm \in M_{IR} | \langle m, u \rangle = b$ is use N_{IR}
 $H_{u,b}^{+} = Sm \in M_{IR} | \langle m, u \rangle = b$ is the function of the f

P is full dimensional it nice presentation:

$$P = \left\{ m \in M_{PR} \right\} \left\{ m_{1} u_{F} \right\} \ge -G_{F} \qquad \text{ If facts} \right\}$$

$$U_{F} = \left\{ m \in M_{PR} \right\} \left\{ m_{1} u_{F} \right\} \ge -G_{F} \qquad \text{ If facts} \right\}$$

$$U_{F} = \left\{ m \in M_{PR} \right\} \left\{ m_{1} u_{F} \right\} \ge -G_{F} \qquad \text{ If facts} \right\}$$

$$U_{F} = \left\{ m \in M_{PR} \right\} \left\{ m_{1} u_{F} \right\} \ge -G_{F} \qquad \text{ If facts} \right\}$$

$$V \in P = \alpha \text{ vectors} \qquad \text{ we have } \alpha \quad \text{cone} \quad C_{v} = \left(u_{PR} (PRM - v) \right) \le M$$

 $V \in P$ a vertex we have a cone $C_v = \text{cone}(\text{Fill} - v) = \text{inf}$ Have correspondence $\left(\begin{array}{c} Q \leq P \\ fnces \\ contany v\end{array}\right)$ $\left(\begin{array}{c} Q \\ W \end{array}\right)$ $\left(\begin{array}{c} Q \\ W \end{array}\right)$

$$(Q_{v} + v) \wedge P \qquad \leftarrow \qquad Q_{v}$$

bijections preserves dim, industron, intersections
Un construct a for from this by writing:

$$\sigma_{Q} = Cone (U_{F} | F fructs containy (Q))$$

$$= Q_{v}^{v}$$

This

$$P$$
 full dim lattice polytype
 $\Sigma_p = \{ \sigma_{\alpha} \mid Q \leq P \}$ is a four called normal ten

A polyhedron
$$P \leq M_{R}$$
 is the intersection of finitely
many closed half spaces
 $P = Im \in M_{R} | \langle m_{ij} u_{i} \rangle \ge -q_{i}$ $i = 1, -1, s]$

Basic structure theurin says

$$p = Q + C$$

Cone of P

$$\begin{bmatrix}
C(P) := I(m,\lambda) \in M_{R} \times IR \\
(m,u_{F}); -\lambda a_{F} & \forall F \\
\forall \lambda > 0
\end{bmatrix}$$

Suy
$$(m,\lambda) \in ((P))$$
 has height λ
Note
When $\lambda > 0$ the slice of $G(P)$ at height λ is λP

$$\frac{Lomma}{P} \quad full dim lattice polyhedron in Migrec P = C \quad then \quad \mathcal{B}(P) \quad is a rhomply convex cone in Migrital
$$\mathcal{C}(P) \cap \left(M_{R} \times [0]\right) = C = res(P)$$$$

Pulyhuhan
$$\rightarrow$$
 Turic Unicty
We build the normal fan of a polyhufan in exactly
the source way as a polytupe. Denote if by Σ_p
Plathe pulyhufan with recession cone C
 $|\Sigma_p| = U$ or $= C'$
 $T \in \Sigma_p$
 $\implies X_{\Xi_p}$ and complete (complete means $|\Sigma| = N_R$)
s.t $W = |\Sigma_p| \cap -|\Sigma_p| \leq |\Sigma_p|$
 $|\Sigma_p|$ give:
 \cdot WONN SN cublettice + N_p := N/N nw quotent lettice
 \cdot stongly convex ratural cone $\sigma_p = |E_p|/S = N_R / = (N_P)_R$
 \cdot affine twice vanity U_{σ_p}
The projection $\frac{\overline{\phi}}{N \to N_p}$

is compatible with the first
$$\sum_{p} p$$
, p
And so we get toric morphism (mus $\overline{\phi}(|\Sigma_p|) = \sigma_p$)
 $X_{\Sigma_p} \longrightarrow U_p$
His is actually projective.
Note each affine pirce of numer to U_p .

$$\frac{D_{c}f}{A (lattice) polyhedral decomposition of a lattice polyhedron
$$\Delta \leq M_{IR} \quad is \quad a \quad sct \quad P \quad of (lattice) polyhedra \quad in \quad M_{IR}, called
cills, st.
(i)
$$\Delta = \bigcup_{\sigma \in P} \sigma$$$$$$

(2) If
$$\sigma \in \mathcal{P}$$
 and $\tau \ll \sigma$ a face, then $\tau \in \mathcal{P}$
(3) If $\sigma_{1}, \sigma_{2} \in \mathcal{P} \implies \sigma_{1} \cap \sigma_{2}$ is a face of both.

A PAL on Δ unt P if its linear when restricted to each $\sigma \in P$, and its strictly convex whet P if $\square \Delta$ convex $(\bigcirc For m,m' \in \Delta, \phi(m) + \phi(m') \ge \phi(m+m'))$ with equality iff m,m' in sume σ

Mumford full dimensional Now let $\Delta \leq M_R$ compact lattice polyhedron Let P be a poly decomp of \triangle Let $\phi: \Delta \rightarrow R$ PL shirtly convex WRT fwith integral slopes mt (Consider $\widetilde{\Delta} = \int (m, \lambda) \in M_R \times \mathbb{R} | \lambda \ge \phi(m) \int this is polyhedron.$ rec (A) = O × R >0 = C construct XB - Uoz \Rightarrow $\times_{\tilde{\star}} \longrightarrow \mathbb{A}$ given locally by $\chi^{(0,1)}$ (-1 t (map of rings) To better understand this degeneration we study the numal for of <u>A</u>