A monord is sot $u$ comm. binary opciation, ad idertity dimir). Uruolly dinoted $(t, 0) P$

Given a fiild $k$ hure mondad algbra

$$
\begin{aligned}
& k[p]=\bigoplus_{p \in P} k<x^{p} \\
& x^{p} \cdot x^{p^{\prime}}=x^{p+p^{\prime}}
\end{aligned}
$$

Ex

$$
\begin{aligned}
& k[\mathbb{N}] \cong k[x] \\
& \left.k[N]^{r}\right]=k\left[x_{1},-x_{r}\right]
\end{aligned}
$$

Throughout we fix the notation:

$$
\begin{array}{ll}
N=\mathbb{Z}^{n} & M=N^{v}=\operatorname{Hom}_{\sharp}(N, \mathbb{Z}) \\
N_{\mathbb{R}}=N \otimes \mathbb{R}^{n} & M_{\mathbb{R}}=M \otimes \mathbb{R}^{n} \\
\neq
\end{array}
$$

Dat
$v \leq N_{\mathbb{R}}$ is a convex rational polyhedral cone
if it's of the form:

$$
\left.v=\text { Cone }(s)=\left|\sum_{u} \lambda_{u} u\right| \lambda_{u} \geqslant 0\right]
$$

$S \subseteq M$ finite.

- A face of a canc $\sigma$ is $\tau:=H_{m} \cap \sigma$ for some hyperplane, $H_{m}=\left\{u \in N_{R} \mid\langle u, m\rangle=0\right\}$ int. $\left.v \subseteq H_{m}^{+}=\left|u \in N_{R}\right|\langle u, m) \geqslant 0\right\rangle$ volta $x=\operatorname{dim} 0$
fact $=\operatorname{dm} \mathbb{R}^{n}-1 \quad$ aga $=\operatorname{dim} 1$
- A cone $v$ is strictly CRPC if it has fol as a face.
- The dual cine of $v$ is

$$
\left.v^{v}=\left|m \in M_{\mathbb{R}}\right|\langle m, u\rangle \geqslant 0 \quad \forall u \in v\right\}
$$

Ex

$$
v=\text { Cone }\left(e_{1}, e_{2}\right) \leq \mathbb{R}^{2}
$$

$$
v^{2}=\operatorname{cone}\left(f_{1}, f_{2}, f_{3},-f_{3}\right)
$$

this is not strectly comsex.
Indced it contuins the $z$-axis Hence 102 cait be c tace (ble of the experting closed half ipace!)
 $\sigma$
 $(y=0) \cap(x=0)$ poiltive pert.
strongly convex rational poly. conss huse unique g.theraturs in the followng sinse:

- let $\rho \leq v$ be un edye. $\Rightarrow$ it's a ray dipustiry from the origin. (fuces of S.C.RPC cro also SCRPC)

Since $\rho$ rational too $\rho \cap N$ ginerated by a unique eliment. calliced $u_{S}$ ray ymeriators
Prue

- A st. CRPC is genicuted by its rey gencrutors.

More facts

- Gordon's theorem $\Rightarrow \sigma^{v} \cap M^{C}$ is finitaly generated monoid (commutatuse acddition, idintity clmmt) i.c $N_{m_{1}} \oplus \ldots \oplus \mathbb{N}_{m_{s}} \subseteq M$
- Fimally $X_{s}=S_{p e c} k\left[\sigma^{v} \cap M\right]$ "the affine toric vaility difined ly the cone $\sigma$.

Ex

$$
\begin{aligned}
& v=\operatorname{Cune}\left(e_{1}, e_{2}\right) \subseteq \mathbb{R}^{2} \\
& \sigma^{v}=\operatorname{Cune}\left(e_{1}^{v}, e_{2}^{v}\right) \leq \mathbb{R}^{2} \\
& \quad k\left[\sigma^{v} \cap \mathbb{Z}^{2}\right]=k[x, y]
\end{aligned}
$$

Def Fans $\rightarrow$ Tori
A fan $\sum \subseteq N_{\mathbb{R}}$ is a finite collection of cones $\sigma \leq N_{\mathbb{R}} \quad$ sit.
(1) every $v \in \sum$ is strongly convex rational polyhedral cone
(2) $\forall \sigma \in \sum$ each face of $\sigma$ is in $\Sigma$
(3) $\sigma_{1}, \sigma_{2} \in \Sigma \Rightarrow \sigma_{1} \cap \sigma_{2}$ is a file of each. (a nl hance in $\Sigma$ )


If $\left.\tau \leqslant v \quad \Leftrightarrow \exists m \in \sigma \cup \cap M, \quad \tau=H_{m} \cap v\right)$
then $X_{t}=\left(X_{\sigma}\right)_{X^{m}}=$ the locus in $X_{v}$ where $X^{m}$ is non Vanishing

Above we require $v_{1} \cap v_{2}$ to be a face of each $\sigma_{1} v_{2}$.
One cur find $m \in \operatorname{Relint}\left(v_{1}^{v} \cap\left(v_{2}\right)^{v}\right)$ it.

$$
\left(x_{\sigma_{1}}\right)_{x^{m}}=x_{t}=\left(X_{\sigma_{2}}\right)_{x^{-m}}
$$

After all these aluings we get a suporatad toxic varicty-

$$
\begin{aligned}
& \frac{E X}{N=\mathbb{Z}} \\
& N_{\mathbb{R}}=\mathbb{R}
\end{aligned} \quad M=\mathbb{Z}
$$

only cons we $v_{+}=[0, \infty)$

$$
\begin{aligned}
& \sigma_{-}=(-\infty, 0] \\
& \tau=10 \tau=\operatorname{Conc}(\phi)
\end{aligned}
$$

$$
|\tau| \rightarrow \mathbb{C}^{*}
$$

$\left.\left\{\sigma_{-}, \tau\right\}, \mid \sigma_{+}, \tau\right\}$ both gre $\mathbb{C}$

$$
\left\{\sigma_{+}, \sigma_{0}, \tau\right\} \text { gives } \mathbb{P}^{\prime}
$$

Ex


Functuriality
$N_{1} \xrightarrow{\phi} N_{2} \quad$ latices (u) group homo.
$\sum_{i} \subseteq\left(\mathbb{N}_{i}\right)_{\mathbb{R}} \quad$ fans
$\phi$ is a map of fans if $\forall \sigma_{1} \in \Sigma_{1} \quad \exists v_{2} \in \Sigma_{2}$ sit.

$$
\begin{aligned}
& \phi\left(\sigma_{1}\right) \subseteq \sigma_{2} \\
\Rightarrow & \phi^{v}\left(v_{2}^{v}\right) \subseteq \sigma_{1}^{v} \\
\Rightarrow & k\left[\sigma_{2}^{v} \cap M_{2}\right] \longrightarrow k\left[\sigma_{1}^{v} \cap M_{1}\right]
\end{aligned}
$$

there uncaps ore compatible for various 5 , \& 10 glue to

$$
X_{\Sigma_{1}} \rightarrow X_{\Sigma_{2}}
$$

Divisors
Orbit-Cone says that

$$
\text { Trays } \left.\rho \text { of } \sum\right\rceil \longmapsto[O(\rho) \underset{\substack{\text { codim } \\ \text { orbits }}}{ } \longrightarrow
$$

the closure $\overline{O(\rho)}$ is $T_{N}$-invariant prime diricon.
$D_{\rho}$. Hence have a valuator $w_{p}: \mathbb{C}\left(X_{\Sigma}\right)^{*} \rightarrow \mathbb{Z}$
Recall a ray $\rho \in \sum$ has minimal ginorator $u_{j} \in \rho \cap N$.
Prop
w/ the above s.tup

$$
\begin{aligned}
& v_{\rho}\left(x^{m}\right)=\left\langle m_{1} u_{\rho}\right\rangle \\
& \operatorname{div}\left(x^{m}\right)=\sum_{\rho \in \Sigma(1)}\left\langle m_{1} u_{\rho}\right\rangle D_{\rho}
\end{aligned}
$$

Df "Dual"
A lattice polytope is $\operatorname{Conv}(S)$ for $S \subseteq M$. frite.
Have faces, fucets, vartices juit as cones excopt this time defirad ly suppoitngy affing hyporplanes.

$$
\begin{aligned}
& F=H_{u, b} \cap P \quad P \subseteq H_{u, b}^{+} \\
& \left.H_{u, b}=S_{m} \in M_{\mathbb{R}} \mid\langle m, u\rangle=b \quad\right\} \quad u \in N_{\mathbb{R}} \\
& H_{H_{u, b}}^{+}=S_{m} \in M_{\mathbb{R}} \mid\langle m, u\rangle \geq b
\end{aligned}
$$

$P$ is fulldimensioral it nice piesintatio:

$$
\begin{aligned}
P & =\left\{m \in M_{R} \mid\left\langle m, u_{F}\right\rangle \geqslant-a_{F} \quad \forall \text { facts }\right\} \\
u_{F_{1}} \Theta_{F} & \in M \text { uniqne. }
\end{aligned}
$$

$v \in P$ a vortox we have a cone $C_{v}=C_{\text {ne }}(P \cap M-v) \leq M_{R}$
Have corresproudme

$$
\left[\begin{array}{l}
Q \leq P \\
f_{\text {fnces }}^{\text {contuy } v}
\end{array}\right] \quad\left\{\begin{array}{l}
f_{u c c s} Q_{v} \subseteq C_{v} \\
Q_{v}=C_{\text {mel }}(Q \cap M-v)
\end{array}\right]
$$

$\left(Q_{v} \cdot v\right) \cap p \leftrightarrow Q_{v}$
bijactions proserves dim, inclussion, intusuctions

We con consitanct a fon from this by wilty:

$$
\begin{aligned}
\sigma_{Q} & =\text { Cone }\left(U_{f} \mid F \text { fruts contcing } Q\right) \\
& =Q_{V}^{V}
\end{aligned}
$$

Thm
P full dim lathce polytype
$\Sigma_{P}=\left\{v_{Q} \mid Q \leqslant P\right\} \quad$ is a fon callid noimal fon


$$
\begin{aligned}
& \sigma_{(0,0)}=\operatorname{Cone}\left(e_{1}, e_{2}\right) \\
& \sigma_{(0,1)}=\operatorname{Cone}\left(e_{1},(-1,-1)\right) \\
& \sigma_{(1,0)}=\text { Cone }\left(e_{2},(-1,-1)\right)
\end{aligned}
$$


$\underset{\mathbb{P}^{2}}{\mathbb{U}}$

A polyhedron $P \subseteq M_{\mathbb{R}}$ is the intirsection of finitaly many closed half spences

$$
\left.P=\left|m \in M_{R}\right|\left\langle m_{i}, u_{i}\right\rangle \geqslant-a_{i} \quad i=1,-, s\right\}
$$

Basic stanture theverm scys

$$
P=Q+C
$$

Q polytupe
$C$ polyhedral cune $P$ a) above $C=\left|m \in M_{R}\right|\left\langle\begin{array}{c}\left.m, u_{i}\right\rangle, 0 \\ i=1,-s\end{array}\right|$
lattice polyhadron (FWRT to M) if
(a) $\operatorname{rec}(P):=C$ is stiongly convex rational polyhidicil(un)
(b) vuticl of $P$ lie in $M$. $\mathbb{t}_{\text {to }} P_{\text {hally }}$ fintily man
vilices

Simikes to polytopos, wo have suppoiting hyperplanes, verticer, fancs, funcets,

Full dim lattice polytope has unique fact presentation： かんて with

$$
\left.P=\left.\right|_{m \in M_{\mathbb{R}}} \mid \ell m, u_{F}\right) \geqslant-a_{F} \quad \forall f f_{\text {nt }} \mid
$$

$U_{F} \in \mathbb{N}$ inward pointing noimal．

Cone of $P$

$$
f(P):=\left|(m, \lambda) \in M_{R} \times \mathbb{R}\right|\left\langle m, u_{F}\right) \geqslant-\lambda a_{F} \quad \forall F=01
$$

Say $(m, \lambda) \in((P)$ has height $\lambda$


Lemma
$P$ full dim lattice polyhedron in $M \not \mathbb{R}$
$\operatorname{rec} P=C$ then $\zeta(P)$ is a strongly convex cone in $M_{\mathbb{R}} \times \mathbb{R}$
al $\quad \varrho(P) \cap\left(M_{\mathbb{R}} \times(0)\right)=C=\operatorname{res}(P)$

Polyhudan $\rightarrow$ Toric Varicty

* We build the normal fan of a polyhidron in exactly the same way as a polytope. Denut. it by $\sum_{p}$

Prop
$P$ lattive polytadion with recession cunc $C$

$$
\left|\Sigma_{p}\right|=\bigcup_{v \in \Sigma_{p}}=C^{v}
$$

$\Rightarrow X_{\Sigma_{p}}$ irnt completc $\left(\right.$ complite mions $\left.|\Sigma|=N_{\mathbb{R}}\right)$
s.t $W=\left|\Sigma_{p}\right| \cap-\left|\Sigma_{p}\right| \leq\left|\Sigma_{p}\right|$
$\left|\Sigma_{p}\right|$ giva:

- $W \cap N \leq N$ cublatice $+N_{P}:=N / N \cap W$ quotent lattice
- stangly convox rational cune $v_{P}=\left|\Sigma_{p}\right| / \omega \subseteq N_{R} / W=\left(N_{P}\right)_{\mathbb{R}}$
- affine toice voriity $U_{v_{p}}$

The projection

$$
N \xrightarrow{\bar{\phi}} N_{p}
$$

is compatible with the furs $\sim \sum_{p}, \sigma_{p}$
And so we got tori moinhirm (fine $\left.\bar{\phi}\left(\left|\Sigma_{p}\right|\right)=v_{p}\right)$

$$
x_{\Sigma_{p}} \longrightarrow u_{p}
$$

His is actually projective.

Note each affine piste of hamal ton maps to $U_{p}$.

Def
A (lattice) polyhedral decomposition of a lattice polyhedron $\Delta \leq M_{\mathbb{R}}$ is a sat $P$ of (lattice) polyhedra in $M_{\mathbb{R}}$, called calls, st.
(1) $\Delta=\bigcup_{\sigma \in \mathcal{P}} \sigma$
(2) If $\sigma \in \mathcal{P}$ and $\tau \leqslant \sigma$ a face, then $\tau \in \mathcal{P}$
(3) If $v_{1}, v_{2} \in P \Rightarrow v_{1} \cap \sigma_{2}$ is a face of both.

A PAL on $\Delta$ weT $P$ if its linear whin restricted to each $\sigma \in P$, and it's strictly convex WRT $P$ if
(1) $\Delta$ convex
(2) For $m, m^{\prime} \in \Delta, \phi(m)+\phi\left(m^{\prime}\right) \geqslant \phi\left(m+m^{\prime}\right) \quad \begin{gathered}\text { with equality } \\ \text { inf } m, m^{\prime} \text { in ump } \sigma\end{gathered}$

Mumford Dagneration Examples
Degeneration of $\mathbb{P}^{\prime} s$

$$
\begin{array}{ll}
\Delta=[0, a+1] & \rho=([0, a],[a, a+1]) \\
\phi: \Delta \rightarrow \mathbb{R} & \phi(0)=\phi(a)=0 \quad \phi(a+1)=L
\end{array}
$$

Consider $\tilde{\Delta}=$ upper convex hull of greph of $\phi$


$$
\begin{aligned}
& X_{(0,0)}=\operatorname{spcc} \mathbb{C}\left[x^{(1,0)}, x^{(0,1)}\right] \quad x^{(0,1)} \longrightarrow t \\
& X_{(4,0)}=\operatorname{spcc} \mathbb{C}\left[x^{(0,1)}, x^{(-1,0)}, x^{(1, L)}\right] \quad \begin{array}{l}
\text { spcc } \mathbb{C}[t] \\
\text { each hav mup } \\
\text { libe thii }
\end{array} \\
& X_{((a+1, L)}=\operatorname{spcc} \mathbb{C}\left[x^{(-1,0)}, x^{(0,1)}, x^{(-1,-L)}\right] \quad \begin{array}{l}
(-1,0)+(1, C)=L(0,1)
\end{array}
\end{aligned}
$$

nluation

Mumford
$f_{h} l l$ dimensional
Now let $\Delta \subseteq M_{\mathbb{R}}$ compact lattice polyhedron
Let $P$ be a poly decamp of $\Delta$
Let $\phi: \Delta \rightarrow \mathbb{R} \quad P L$ strictly convex WRT $\rho$ with integral slopes

$$
m \in \Delta
$$

Consider $\quad \tilde{\Delta}=\left\{(m, \lambda) \in M_{\mathbb{R}} \times \mathbb{R} \mid \lambda \geqslant \phi(m)\right\}$ this is labile.

$$
\begin{aligned}
& \operatorname{rec}(\pi)=0 \times \mathbb{R}_{\geqslant 0}=C \text { constant } X_{\Delta} \rightarrow u_{\sigma_{0}} \\
& \Rightarrow X_{\tilde{\Delta}} \longrightarrow A^{\prime}
\end{aligned}
$$

give locally by $x^{(0,1)}(-1 t$ (map of rings)

To bitter understand this decoration we study the normal fun of $\widetilde{\Delta}$
$q: M_{\mathbb{R}} \times \mathbb{R} \longrightarrow M_{\mathbb{R}}$ projection

is there a cupererum hypiplay $\uparrow$ which popicaty

Faces of $\tilde{\Delta} \longrightarrow$ (nonhomcomoritically) to face hore "veitical faces) not a face "houriontal" fuler
$\widetilde{\Delta}$
ü $\underset{\sim}{u}$ a $\sigma$ maximol hrititutal face s.t. $\left.\phi\right|_{p(\sigma)}$ has slope $n_{\hat{\sigma}} \in N$

- then the nuimal a ray gincouted by $\left(-n_{\tilde{\sigma}}, 1\right)$
- the vuitical fuxes heve noimal cone contained $N_{R} \times 102$.

So $x^{(0,1)}$ vanishos on horizontal faces to ordis 1 docsint vonith on vertical faces
codiminsilin 1
$\Rightarrow \pi^{-1}(0)=$ union of toric divieurs corrospondiry to maximal horizantal faces

